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Abstract

A CDM theory is further developed in order to better model the non linear and dissipative behavior of Ceramic Matrix Composites.
A new damage deactivation rule is developed, directly based on mechanics of microcrack behavior, considering both closure effects and the
corresponding elastic energy storage. The complete model uses two sets of damage state variables, the scalar ones correspond to microcracks
oriented by reinforcements and a second order tensor that evolves with the maximum principal strain directions. The model is applied to
uniaxial and multiaxial monotonic and cyclic tests on a SiC/SiC composite. In addition, the new version of the damage deactivation rule
allows a progressive effect and a better description of the residual strain. 2002 Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
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1. Introduction

The Continuum Damage Mechanics (CDM), as a purely
macroscopic tool, do not try to describe all the local, mi-
cromechanical and physical features but summarizes and
approximates them through global constitutive and dam-
age equations. Since the pioneering work of Kachanov [21]
many progresses have been done in the development of a
consistent continuum framework and its application to nu-
merous materials.

One of the difficult subjects in CDM modeling is the si-
multaneous description of damage induced anisotropy and
the damage deactivation effects that appear under unloadings
and compressive-like loading conditions. Concerning dam-
age induced anisotropy, works done during the eighties were
introducing damage vectors [23], second order tensors [12,
32], or fourth order tensors [5,20]. Let us recall that the idea
of a second order tensor was also proposed by Kachanov and
Vakulenko [36], based on a micro-macro analysis for a mi-
crocracked elastic materials. The last category, a fourth or-
der damage tensor, is probably necessary in the case of an
initially isotropic material, when the microcracks, oriented
by the applied stress (or strain) direction, induce a clear
anisotropy of the subsequent material behavior. However, in
the present paper, where the material is initially anisotropic,
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and where a significant amount of microcracks is oriented by
the composite reinforcements, we decide to limit the damage
description to a set of scalar variables and one second rank
damage tensor. The reason for such a limitation will appear
in the subsequent model developments. One of them is to
use a fourth rank damage effect tensor that depends linearly
on the second order damage tensor.

Concerning composite materials, damage models have
been developed at several scales during the last decade, using
various approaches. One of the most powerful for structural
applications is developed at the mesoscale, considering for
instance each ply of a composite laminate as a continuum.
We can mention the works done by Talreja [35], and the
Ladeveze approach [24,26]. There are also many attempts
to model composite materials and structures at various mi-
croscales (fiber, matrix, bundles, plies, interfaces. . .) us-
ing both fracture mechanics and interface damage mechan-
ics concepts, but these aspects will not be developed in the
present paper.

The presentation focuses here on the case of CMC’s, es-
pecially SiC/SiC composites, where the available ductility
is essentially due to matrix microcracking and debonding
and friction at the fiber/matrix interfaces. Moreover, in such
composites the damage deactivation effects are extremely
pronounced, which need to focus a special attention to the
application and validity range of the corresponding deacti-
vation rules. Section 2 summarizes the general lines of the
followed CDM approach and gives the constitutive and dam-
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age model for CMC’s applications, limiting the presentation
to the particular case where damage is active. The general
applicability of the model is checked Section 3 by compar-
isons with several simple or complex experiments made on
a SiC/SiC composite, including multiaxial tests realized on
tubular specimens under tension/torsion or tension/internal
pressure.

Section 4 discusses the difficult problems associated with
the damage deactivation conditions. We explain some defi-
ciencies of a condition used previously at Onera [6,7,9,30]
that was able to preserve the continuity of the stress-strain
response for general complex multiaxial loading conditions.
A new formulation is then proposed, based on microme-
chanics arguments. In Section 5 some applications are given
for SiC/SiC composites, that demonstrate the improvements
and additional modeling capabilities associated with the new
deactivation methodology. We also propose a generalized
formulation that introduces a progressive deactivation. The
present modeling capabilities and future developments con-
cerning the implementation of damage induced friction ef-
fects are then discussed in Section 6.

2. General constitutive and damage framework

In this section, we summarize the developed model for its
application to Ceramic Matrix Composites. The formulation
is shown considering only conditions for active damage, in
order to extract the essential modeling features and to recall
the general thermodynamic framework.

The composite material is modeled at the mesoscale level,
as a continuum. In case of laminated structures for example,
each ply is treated as a different material, with its own consti-
tutive and damage equations, the laminate model being then
obtained through the structural analysis. To describe delam-
ination between plies, as in many other work, we assume
damaging interfacial layers. However, the basic configura-
tion considered here applies for a composite representative
volume element, treated as homogeneous at the mesoscale.
For CMC’s it will be the superposition of several woven
plies.

The model is built up in the general framework of contin-
uum thermodynamics with internal variables. In the present

context, the main independent internal state variables are
the damage variables, either scalars, second order or fourth
order tensors. We presently limit ourselves to scalarsδα,

α = 1,2, . . . ,N , and one second order tensord . The higher
order anisotropies are being given by fourth order material
dependent tensors, related to the composite microstructure.
Variablesδα correspond to families of microcracks that de-
velop parallel to the reinforcements, as the woven bundles.
On the contrary, the second order damaged involves three
orthogonal families of microcracks, for which directions are
not necessarily given by the reinforcements. Such a tensor-
ial variable represents at the macroscopic level those microc-
racks which evolutions are driven by the maximum principal
strain (or stress).

The thermodynamics based CDM approach then consid-
ers two potentials:

– thestate potential that contains all information relative
to the elastic behavior, including the damage effect and
damage deactivation effects. It is formulated in terms
of the elastic strain as the observable variable, but the
dual stress formulation also exists, equivalent for low
damage values. An inelastic strainεin, containing sev-
eral terms, will play role when incorporating deactiva-
tion and friction effects and also residual strains asso-
ciated with the manufacturing process and the develop-
ment of damage. Table 1 indicates the specific choices
made for Ceramic Matrix Composites, in the situation
where damage effects are all active (only open micro-
cracks). Damaged Hooke’s law of the material is ob-
tained directly by derivation, as well as the thermody-
namic forces associated with damage variables (called
respectivelyyα andy). The present formulation of the
state law has been guided by micromechanics consid-
erations. The potential expression in Table 1, at least
in the case whereεin is neglected, can be considered
as the dual expression from the ones that are available
for solid containing many microcracks (see for example
Kachanov [22]).

– thedissipative potential, written in the space of thermo-
dynamic forces, that allows to respect directly the sec-
ond law of thermodynamics by using the corresponding

Table 1
The state potential and the thermodynamic forces for the completely active damage

ψ(ε) = 1

2

(
ε − εth − εr) : C̃ : (ε − εth − εr) (1)

C̃ = C −
m∑

α=1

δαKα − [
D(d) : K]

s
D(d) = γ (1 ⊗ d)s + γ − 1

2
(1⊗d + 1 �⊗d)s (2)

σ = C̃ : (ε − εth − εr) (3)

yα = − ∂ψ

∂δα
= 1

2

(
ε − εth − εr) : Kα : (ε − εth − εr) (4)

y = − ∂ψ

∂d
= γ

4

(
ε̄Tr(σ̄ )+ σ̄ Tr(ε̄)

) + 1− γ

2
(σ̄ .ε̄)s with ε̄ = ε − εth − εr, σ̄ = K : ε̄ (5)
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normality rules. In the present context we do not fol-
low a completely associated rule, considering the pos-
sible dependency of the dissipative potential upon other
state variables (considered as parameters). In practice,
for rate independent conditions, this potential is taken
as the indicatrice function of the “non-damage” domain,
the one inside which thermodynamic force evolutions
do not produce any damage growth (like the elastic do-
main in standard plasticity). Therefore, thermodynamic
arguments and associated dissipated energies, are used
essentially in order to limit the range of possible choices
for the damage rates. Moreover, the chosen expressions
do not respect micromechanics quantitatively, as shown
for instance by Kachanov [22]. Micromechanics argu-

ments will be retained only qualitatively when dealing
with damage deactivation effects (microcrack closure)
and the associated friction effects.

In Table 2 are indicated the expressions chosen for the
non-damage surfaces, that serve of damage loading surfaces.
For the scalar variables, we consider coupled multicriteria.
For the tensorial damage there is a combination of isotropic
and purely anisotropic effects (by means of parameterχ ) and
a provision for a special shape change that will be explained
below (by means of parameterζ ).

Let us remark that the present theory, thanks to the
normality and to the expression for the thermodynamic
force y (see Table 2), allows to develop the tensorial

Table 2
Dissipative potential, damage loading functions and normality assumption

fα = gα

(∑
β

aαβ 〈yβ 〉
)

− δα

Dα
c

� 0 (6)

f = g
(
χ(y+ : Q : y+)1/2 + (1− χ)Tr(y)

) − ζ Tr(d)− (1− ζ )Tr(y.d)

Dc
� 0 (7)

δ̇α = µ̇α
∂fα

∂yα
ḋ = µ̇

∂f

∂y
(8)

Fig. 1. Tension-compression on SiC/SiC in the direction 0–90◦ . (a) previous model with one tensorial variable; (b) previous model with only scalar variables;
(c) experiment; (d) new formulation with only scalar variables.
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Fig. 2. Tension-compression on SiC/SiC in the direction 45◦ : (a) previous model with one tensorial variable; (b) previous model with only scalar variables;
(c) experiment; (d) new formulation with only scalar variables.

Fig. 3. Tension-torsion tests on SiC/SiC. Tensile and shear responses for 4 loading ratios.

damaged with varying principal directions (if the applied
strain has varying directions). Then the damage directions
are no longer with the same symmetries of the initial
material, and the initial orthotropy is loosed due to this
tensorial variable.

2.1. Application to a SiC/SiC material

The capabilities of the constitutive model, which general
lines were presented just above, can be evaluated from a very
complete experimental study made on a SiC/SiC composite
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Fig. 4. Prediction of the variation of Young’s modulus (directions 1 and 2) on SiC/SiC for incremental tensile loading cycles followed by incrementalinternal
pressure loadings.

material. This one (CERASEP ® 347) was manufactured by
SEP, in the context of a Brite-Euram project (BE 5462) [31],
including tension-compression specimens as well as tubular
specimens that allowed to perform tension/torsion and ten-
sion/internal pressure tests. The material is a woven system,
composed of plain weaves with equilibrated 0 and 90◦ direc-
tions, so that it can be considered as initially orthotropic and
symmetric. As observed in many experiments [28], the mi-
crocracks develop with the following sequence: (1) matrix
cracks initiate, mainly on porosities, and grow more or less
perpendicular to the maximum principal stress. These cracks
also propagate in the longitudinal bundles, with fiber bridg-
ing that induces dissipation effects by friction; (2) transverse
cracking in the bundles, with microcracks parallel to the
fibers; (3) when these two systems of cracks are saturated,
a third one develops, as longitudinal cracks, either parallel
to fibers inside the longitudinal yarns or interlaminar cracks.
Such observations are also confirmed by the complete mea-
sures of stiffness evolutions, as made by ultrasonic meth-
ods [2].

The model presented in Section 2 has been identified,
from tensile tests at 0◦ and 45◦ only, including unloading
parts and transverse strain measurements. It is one specificity
of the Onera model to describe the damage induced change
in the transverse compliance for the 45◦ direction, which

allows its complete determination without using multiaxial
results. The damage evolution functions in (6) and (7) have
been taken of the following form, in order to incorporate
saturation effects, commonly observed in composites:

g(y)= 1− exp

(
−

〈√
y − √

yo√
yc

〉n)
. (9)

The elastic strain at deactivation was taken as zero valued,
consistently with what is commonly observed in SiC/SiC.
The same model could apply also to C/SiC with a non
vanishing deactivation strain, which induces residual strains
after unloading during a tensile test.

Results for tension–compression tests, with increasing
the load extrema every cycle, are shown in Figs. 1 and 2.
On the first one are presented the results for the direction
0–90◦ (tension-compression parallel to the yarns). Figs 1(c)
and 1(a) respectively show the experiment and the applica-
tion of the model with only one tensorial variable, includ-
ing the damage deactivation responses (in compression) that
will be discussed in next section. Figs. 2(c) and 2(a) show
the same results for the direction 45◦ (tension-compression
at 45◦ of the yarn direction). In the two cases the model-
ing can be improved if incorporating a combination of one
tensor and three scalar variables as indicated in Section 2.
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Fig. 5. Proportional tension/torsion cyclic loading, showing the shear modulus damage deactivation for compression: (a) experiment, (b) new formulation,
(c) previous formulation.

Moreover, the model capabilities (for active damage con-
ditions) have been checked under several complex multiaxial
conditions, thanks to a very complete experimental study re-
alized on tubular specimens at room temperature [31]. Fig. 3
shows the prediction of combined tension-shear experiments
for four stress ratios (including pure tension and pure shear).
The model predictions are extremely good in any case, both
for axial, transverse and shear responses.

The biaxial tension/internal pressure test on a tubular
specimen, shown on Fig. 4, corresponds to cyclically re-
peated tensile loading (with increasing maxima), continued
by internal pressure loading also at increasing levels (com-
pression compensated in order to eliminate end effects).
These tests were designed in order to represent biaxial ten-
sile loading sequences with two successive uniaxial condi-
tions in orthogonal directions.

The lower part of the figure shows an excellent agreement
between the calculated and measured elasticity modulus
(measured by small biaxial intermediate loadings realized
between each damaging loading). It can be seen that the
stress level in direction 2 (hoop stress) causing the start of
the drop in modulusE22 is only slightly higher than the
initial threshold under axial tension (leading to the drop
in modulusE11). This test clearly shows the requirement
for a combined criterion (for the tensorial damage loading

function) such as given by Eq. (7) in Table 2 withζ = 0 . In
the reverse case (ζ = 1), as in most existing tensorial damage
models, the new threshold in direction 2 would have been of
the order of the maximum stress attained during loading in
the first direction.

3. The damage deactivation methodology

3.1. Discussion about previous damage deactivation
theories

Damage deactivation corresponds to the initial elastic
stiffness partial or complete recovery when microcracks
close under a reverse loading (compressive like loading).
Those cracks that were developing and opening under the
previous tensile like loading are more or less progressively
closed by the subsequent unloading. We have not to confuse
that problem with the one that corresponds with the non-
symmetric behavior, easier to model, between tensile and
compressive damaging loadings. One of the first attempts
to describe damage deactivation was done by Lemaitre and
Ladevèze [27], in the particular case of a scalar damage
variable. A more general framework was already proposed
by Ladevèze [24] in an Internal Report, which main lines
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were presented in a Conference [25], though the proceeding
appeared only in 1993.

More difficult problems arise for non-scalar damage de-
scriptions, associated with damage vectors [23], second
order damage tensors [34], fourth order damage tensors
[18,20]. Most of them were discussed by Chaboche [6–8],
showing either non symmetric damaged elastic stiffness
(Hooke’s law not deriving from a potential) or possibilities
for first order discontinuities in the stress-strain response
when damage deactivation takes place under non propor-
tional multiaxial loadings. The same problems were recog-
nized by Carol and Willam [4] who used the terminology
of a ‘spurious’ energy dissipation. The other framework that
preserves stress-strain response continuity is Ladevèze’s ap-
proach, using a spectral decomposition of the effective stress
(the stress ‘amplified’ by the damage tensor). However this
theory presents also some shortcomings, like abnormal non-
linear responses when deactivation takes place [30].

For these reasons the models developed at Onera till the
recent years, mainly for composite materials, were built up
on a special deactivation rule [6,8]. This one enforce the
stress-strain continuity by a deactivation effect that is lim-
ited to the principal stiffness terms (the corresponding ‘di-
agonal terms’) expressed in the damage principal axes, us-
ing projection operators. Such a condition has been shown
later [13] to be the only one able to respect continuity in
the context of a purely bi-linear elastic behavior. Though in-
troduced slightly different arguments, the same deactivation
condition was also used by Dragon et al. [14,16,17] in the
context of soil mechanics applications. The elastic potential
and the corresponding state laws are indicated in Table 3 for
the model that incorporates this previous deactivation rule.
Projection operators are used, both for the scalar and tensor-
ial damage models, in order to select in the deactivation rule
the stiffness ‘diagonal terms’, which are multiplied by the
corresponding strain component that vanishes when deacti-
vation takes place.

The damage deactivation rule previously used at On-
era [29] was suffering of some shortcomings, related with
the limitation of deactivation effects to the principal stiff-
ness. Some of these limitations are discussed just below, by

comparison with test results obtained on the SiC/SiC com-
posite material (Fig. 6).

– The shear modulus (in the principal damage axes) is
not deactivated at all, which means a perfect sliding of
the closed crack lips, a not very realistic assumption.
Fig. 5 shows a combined tension/torsion cyclic loading
realized on the SiC/SiC material. Experiment (Fig. 5(a))
clearly indicates that microcracks created by the first
shear, combined with tensile loading, close during
reverse portion, due to the compressive load, and that the
initial shear stiffness is partially recovered. The previous
formulation (Fig. 5(c)) was not able to model such a
stiffness recovery;

– Fig. 6 illustrates the same fact differently: after ini-
tially damaging under tension, in the 0◦ direction of
the woven fabric, we can expect microcracks perpen-
dicular to the tensile axis. The shear response under a
slightly positive tension shows a considerable reduction
in shear modulus. This reduction is slightly less pro-
nounced for negative shear, which means that additional
microcracks, longitudinal or at 45◦, have developed dur-
ing positive shear. Contrarily, under a slight axial com-
pression (Fig. 6(b)), for both shear direction the shear
stiffness is partly recovered (here also we have the resid-
ual effect of some cracks not closed by the compressive
loading).

– the tension-compression in the 45◦ direction (relative
to the woven fabric orientation) is also an indicator of
the previous model limitations (see Fig. 2): in case of a
purely tensorial model principal damage directions co-
incide with the principal stress system: there are slight
deficiencies in the model response for compressive side
(Fig. 2(c)), compared with experiments (especially some
abnormal stiffening, larger than the initial stiffness).
Contrarily, in case of a purely scalar damage model,
in which cracks are developing parallel to the yearns
(at 45◦ of the tensile direction), we have a completely in-
correct response (Fig. 2(d)), with damage even increas-
ing under compressive loads. This is an artefact, because
the normal version of the model was combining both

Table 3
State equations of the previous formulation of damage deactivation

ψ(ε) = 1

2

(
ε − εth − εr) : C̃ : (ε − εth − εr) + 1

2

(
ε − εc) : (Ceff − C̃

) : (ε − εc) (10)

Ceff = C̃ + η

N∑
α=1

H(−pα.ε̄.pα)δαP α : Kα : P α − η

3∑
i=1

H(−ni .ε̄.ni )N i : [D(d) : K]
s
: N i (11)

P α = pα ⊗ pα ⊗ pα ⊗ pα N i = ni ⊗ ni ⊗ ni ⊗ ni ε̄ = ε − εc

σ = ∂ψ

∂ε
= C̃ : (ε − εth − εr) + (

Ceff − C̃
) : (ε − εc) (12)

σ r = − ∂ψ

∂εr = C̃ : (ε − εth − εr) = σ − (
Ceff − C̃

) : (ε − εc) (13)
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Fig. 6. Cyclic shear on SiC/SiC with a slight axial traction (left), a slight axial compression (right).

tensorial and scalar variables and was not suffering of
such an extreme deficiency. However this completely
abnormal behavior, indirectly produced by the limited
deactivation rule, will be easily removed, even with the
scalar damage version, when using the new deactivation
rule proposed in Table 3.

A last difficulty was a theoretical one. When coupling the
damaged elastic behavior and the deactivation effects with
plasticity (as needed for example in metal matrix compos-
ites, but also in some organic matrix ones, like in C/PMR15
composites), there are two possible definitions of plastic
strain and of the corresponding thermodynamic force. These
two definitions were explained with more details in [10].
With the free energy chosen in Table 3, we obtain a plastic
strain that is defined, at zero stress, by the elastic linear un-
loading, ‘all damages active’, eventually extrapolated to the
zero stress state, as illustrated schematically on Fig. 7 for the
two possible situations in tension-compression: a positive or
a negative stress at deactivation. Using instead the following
form for free energy:

ψ(ε) = 1

2

(
ε − εth − εr) : C : (ε − εth − εr)

+ 1

2

(
ε − εc) : (Ceff − C

) : (ε − εc) (14)

leading, by derivation, to the stress and plastic stress:

σ = ∂ψ

∂ε
= C : (ε − εth − εr)

+ (
Ceff − C

) : (ε − εc), (15)

σ r = −∂ψ

∂εr = C : (ε − εth − εr)
= σ − (

Ceff − C̃
) : (ε − εc) (16)

we obtain the dual definition for plastic strain: it is defined
by the linear elastic unloading, ‘all damages deactivated’
(from compressive side) eventually extrapolated to zero
stress state, as illustrated on Fig. 8.

3.2. Micromechanics considerations for the deactivation
process

A completely different approach will be now formulated,
still in the framework of Continuum Damage Mechanics, but
with some specificities directly deduced from a microme-
chanics analysis of microcrack closure effects [3]. We con-
sider the schematic example of a family of parallel microc-
racks, in an homogeneous material volume element, submit-
ted to a combination of tension-compression and shear load-
ings (Fig. 9(a)). We also assume that, under compressive clo-
sure of microcracks, friction effects are such important that
sliding of crack faces is completely excluded. Then, after a
tangential relative displacement of the crack faces under a
slightly positive tensile stress, if we apply a slight compres-
sion we will store this tangential relative displacement, even
when removing the initial shear stress.

We consider here an infinite friction coefficient, that
leads to the notion of a complete deactivation. It means
the complete recovery of the initial shear stiffness (as
well as Poisson’s transverse effects), but the correspond-
ing stress-strain response discontinuity (if any due to the
combined multiaxial loads) is ‘stored’ inside the material.
Further stress or strain evolutions (with microcracks still
closed) then store a corresponding amount of elastic en-
ergy.

In the reverse case, when microcracks re-open, following
a slightly positive normal stress, this infinite friction view
can induce an instantaneous stress-strain change. Fig. 9(a)
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Fig. 7. Schematics of the plastic strain definition after a tensile damage(εth = 0): (a) closure point with a negative stress; (b) closure point with a positive
stress.

Fig. 8. Schematics of the reverse hypothesis for the plastic strain definition after a tensile damage(εth = 0): (a) closure point with a negative stress; (b) closure
point with a positive stress.

illustrates schematically the case of a positive shear under
opening (small positive normal stress) followed by closure
under shear (small negative normal stress). Changing the
shear stress from D to E (still closed) induces an elastic
energy storage. At point E, assuming a change in normal
stress from negative to positive leads to a sudden shear strain
release, from E to F (under a shear stress control), and the
associated elastic energy release. The real case of a non
infinite friction coefficient will be discussed in Section 5
(Figs. 9(b) and 9(c)).

3.3. The new deactivation formulation

The CDM new formulation of the deactivation model is
given here in terms of elastic strain. For the moment we
do not consider any residual or plastic strain, which can be
introduced later without difficulty. The Hooke law is written
with the effective stiffnessCeff and a ‘stored strain’εs that
will be defined below:

σ = Ceff : (ε − εs). (17)



140 J.-L. Chaboche, J.-F. Maire / Aerospace Science and Technology 6 (2002) 131–145

Fig. 9. Schematics of the microcrack closure effects under tension-shear combined loads: (a) shear stress-strain responses; (b) closure loading incase of a
non-infinite friction; (c) opening dissipation by slip with a non-infinite friction.

We assume the deactivation criterion in terms of the
elastic strain component normal to the crack. It means
that nα denotes the direction normal to the crack, either
the normal to the yarn (for scalar damage variables) or
the principal damage direction (for tensorial damage). The
deactivation criterion writes:

ε̄nα = nα.
(
ε − εc).nα � 0. (18)

If the scalar normal strain̄εnα is positive, the corresponding
damagedα is active; if ε̄nα is negative, it is deactivated. The
condition can be written on the effective stiffness as:

Ceff = C −
m∑

α=1

ηαdαKα (19)

whereηα = H(ε̄nα ), H being the Heaviside function, and
dα meaning either a scalar damage variable or the principal
value of the tensorial one, thoughm= N + 3 represents the
total number of such variables. Let us explain first the case
where, all damages being active, we deactivate one damage
component, saydα . Hooke’s law before deactivation can be
written:

σ = C(+)
α : ε = C̃ : ε (20)

and after deactivation it is replaced by:

σ = C(−)
α : (ε − εs

α

)
, (21)

whereC(−)
α = C̃ + dαKα . Let us assume that deactivation

takes place atε = εf
α . The stress-strain response disconti-

nuity is prevented by combining (20) and (21) in order to
determine the “stored strain”εs

α :

σ f
α = C(+)

α : εf
α = C(−)

α : (εf
α − εs

α

)
, (22)

εs
α = [

I − (
C(−)

α )−1 : C(+)
α

] : εf
α. (23)

After deactivation, we have the elastic energy storage
for any further strain change. Considering the free energy
as ψ f

α = 1
2ε

f
α : C̃ : εf

α just at deactivation, we obtain its
subsequent evolution by integrating (21) with a constantεs

α :

ψ(ε) = ψ f
α +

ε∫
εf
α

σ (ε) : dε

= 1

2

(
ε − εs

α

) : C(−)
α : (ε − εs

α

) +ψs
α. (24)

The energy stored at closure is defined by the last term, that
can be rearranged successively as:

ψs
α = 1

2
εf
α : C̃ : εf

α − 1

2

(
εf
α − εs

α

) : C(−)
α : (εf

α − εs
α

)
= 1

2
σ f
α : εs

α

= 1

2
σ f
α : (C̃−1 − C(−)

α

−1) : σ f
α

= 1

2
εs
α : (C̃−1 − C(−)

α

−1)−1 : εs
α. (25)

It is the last expression that we will retain, considering
εs
α as the additional state variable (when damagedα is

deactivated). The free energy then writes:

ψ(ε) = 1

2

(
ε − εs

α

) : C(−)
α : (ε − εs

α

)
+ 1

2
εs
α : (C̃−1 − C(−)

α

−1)−1 : εs
α. (26)

The generalization can easily be checked by considering
successive deactivations and a recurrent proof. Let us as-
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sume that the firsti damage variables have been deactivated.
Hooke’s law and the free energy write respectively:

σ = Ci : (ε − εs) εs =
i∑

j=1

εs
j , (27)

ψ(ε) = ψe +ψs

= 1

2

(
ε − εs) : Ci : (ε − εs)

+ 1

2

i∑
j=1

εs
j : (C−1

j−1 − C−1
j

)−1 : εs
j . (28)

Be careful, in this generalization we have denotedCo = C̃,
with a completely active damaged state, andCm will be the
initial stiffnessC, with all damages deactivated.

Remark 1. The last term can be written
1

2

∑
σ f
j : εs

j = 1

2

∑
σ f
j : (c) : σ f

j ,

whereσ f
j is the stress state at deactivation ofdj . It can also

be rewritten as
1

2

∑ 1

2dj
εs
j : H−1

j : εs
j

whereH j = C−1
j−1 : Kj : C−1

j (symmetric by construction)

is the compliance difference$S = C−1
j−1−C−1

j . We recover
an expression similar to the one obtained by Andrieux
et al. [1], also used by Hild et al. [19] in another context.
In the present theory, there are also some similarities
with the one developed since a few years by Dragon
et al. [14,16], in the context of soil and rock mechanics.
However, the deactivation effects are not so complete and
the corresponding theory is written essentially for an initially
isotropic material.

Remark 2. In the present context of an infinite friction the
damage reactivation (or reopening of the cracks) will lead to
a discontinuous strain response (see Fig. 9(a)) if the strain
at reactivation ofdα is different from the one,εf

α , that was
stored at deactivation.

Remark 3. The thermodynamic forces associated with
damage variables are written using the principal damage
axes for the tensorial variable (which are needed to express
simply the deactivated stiffnesses playing role in the stored
energy termψs . This can be done after transforming the
fourth order tensor[D(d) : K]s of Table 1 in the following
decomposition

[
D(d) : K]

s
=

3∑
α=1

dαK
α, (29)

wheredα , nα represent respectively the principal damage
values and the principal damage directions, and where the
fourth order tensorKα can be expressed as:

Kα = γ
[
(K : 1)⊗ (

nα ⊗ nα
) + (

K : (nα ⊗ nα
)) ⊗ 1

]
s

+ γ − 1

2

[
K : (1 ⊗ (

nα ⊗nα
))

+ K : (1 ⊗ (
nα ⊗nα

))]
s

(30)

or with the components:

Kα
ijkl = γ (Kijppnknl +Kppklninj

+Kijpqnpnqδkl +Kpqklnpnqδij )

+ γ − 1

2
(Kipklnj np +Kjpklninp

+Kijkpnpnl +Kijlpnpnk).

With these notations at hand, the damage forces express
easily in the same format both for scalar and tensorial
variables. They write in two parts. The first one corresponds
with the classical driving term (elastic energy release rate),
the second one with the variation of deactivation stored
energy when some (other) damage variables have been
deactivated:

yα = ye
α + ys

α = 1

2
ηα

(
ε − εs) : Kα : (ε − εs) + ys

α, (31)

ys
α = 1

2

α−1∑
j=1

σω
j : (C−1

j−1 : Kα : C−1
j−1

− C−1
j : Kα : C−1

j

) : σω
j

+ 1

2
σω
α : C−1

α−1 : Kα : C−1
α−1 : σω

α , (32)

where thej indices have been ordered by the successive
deactivations:d1 first, thend2, . . . , dα, . . . , dm (with m =
N + 3). The stressσω

j represents the corresponding stress
at deactivation:

σω
j = (

C−1
j−1 − C−1

j

)−1 : εs
j . (33)

Let us note here the approximation about neglecting the
change of the tensorial damage principal directions when
writing the part of elastic stored energy release. In fact it
is easy to check that theys

α is significantly lower thanye
α

in situations where damage is increasing (but with some
damage component deactivated). Then, it is anticipated that
neglecting this variation on a low part ofyα will not affect
the positiveness of dissipation.

Remark 4. The thermal expansionεth, and the residual
strain εr (or plastic strain) can now be implemented. This
is done in Table 4, in the framework of general notations,
not repeating the expression forψs , given in (28):

ψs = 1

2

i∑
j=1

εs
j : (C−1

j−1 − C−1
j

)−1 : εs
j . (34)

The thermodynamic conjugate forces follow easily as in
Remark 3. We can define the conjugate of the strainεs

j stored
by deactivation as:

σ s
mj = ∂ψ

∂εs
j

= (
C−1

j−1 − C−1
j

)−1 : εs
j − σ = σω

j − σ. (35)
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Table 4
State equations of the new formulation with the instantaneous deactivation rule

ψ(ε) = 1

2

(
ε − εth − εr − εs) : Ceff : (ε − εth − εr − εs) +ψs

(
deff, ηαδα, ε

s) (36)

Ceff = C −
m∑

α=1

ηαδαKα − [
D

(
deff) : K]

s
deff =

3∑
i=1

ηidini ⊗ ni (37)

ηi = H
(
ni .

(
εe − εc).ni) ηα =H

(
pα.

(
εe − εc).pα

)
εe = ε − εth − εr (38)

4. Applications on the SiC/SiC composite

4.1. Application to special test conditions

The proposed new deactivation rule has been incorpo-
rated into the SiC/SiC model. The thermodynamic forces
associated with damage are modified according to (28) and
contain additional terms related to the stored energy. How-
ever there is practically no change for the normal (active)
loading conditions, so that the damage loading surfaces and
the material parameters are unmodified. The main differ-
ences can be observed under the special test conditions that
were already discussed in Section 4.1.

Let us begin by the extreme situation where we do
implement only the scalar damage variables. In that case, the
completely inoperative results of the previous formulation
are clearly eliminated (see Fig. 2) and a quite good modeling
of the 45◦ tension-compression experiments is now easily
possible (Fig. 2(d)). In the 0◦ direction the modeling
is also excellent (Fig. 1(d)), with no effect of damage
deactivation on the transverse strain (contrary to the previous
formulation).

In the cyclic tests in combined tension/torsion (propor-
tional) for example, the new formulation also leads to a much
more acceptable result (Fig. 5(b)) compared to the previ-
ous formulation. Other test conditions under complex ten-
sion/torsion have also shown good predictions with this de-
activation new rule.

4.2. A formulation with a progressive deactivation

In actual situations the deactivation effects are not play-
ing role instantaneously as bilinear elastic responses. In fact,
actual microcracks, with some randomness in their orienta-
tions, close progressively, which renders much more contin-
uous the macroscopic behavior. A progressive deactivation
rule has been formulated that replaces the Heaviside func-
tions of the deactivation criterion (18) by a progressive evo-
lution of the deactivation indexη [33].

The formulation is built up into the thermodynamic
framework, considering as a particular case the above for-
mulation with an instantaneous deactivation. We limit our-
selves to the case of scalar variables. Except notation diffi-
culties, the theory can easily be generalized with a damage
tensor [33]. We assume several internal state variables:

– the damage variables themselves,δα, α = 1,2, . . . ,N;
– the deactivation indexesηα, α = 1,2, . . . ,N , associated

with each scalar damage variable. They take the val-
ues 1 when damage is active, and 0 when damage is
completely deactivated;

– the associated stored strainsεs
j , that are stored progres-

sively when deactivation progresses.

Equations of state of this model are the same than for
the instantaneous deactivation. We have assumed exactly the
same form as previously for the free energy, including the
stored strainsεs

j andεs = ∑
εs
j . In the additional stored en-

ergy terms in the free energy we use the successive stiff-
nessesCj for completely deactivated damageδj , assum-
ing in the notations that the deactivation is ordered, which
means:

0 � η1 � η2 � · · · � ηN � 1.

Provided index factors and damage variables are considered
as independent state variables, the corresponding two sets of
thermodynamic forces,yα andχα , express independently.
(31) stands foryα and we have similar relations forχα :

χα = 1

2
δα

(
ε − εs) : Kα : (ε − εs). (39)

For the forces associated with the (now continuous) stored
elastic strainsεs

j , we can easily demonstrate that they still
correspond with:

σ s
j = σω

j − σ (40)

whereσω
j = (C−1

j−1 − C−1
j )−1 : εs

j is now the stress at de-
activation in the corresponding instantaneous deactivation
(Fig. 10(b)). The damage evolution equations are unmodi-
fied. The other evolution equations concern:

– ‘The evolution of the deactivation index’, from 1
to 0, during the deactivation process (from 0 to 1 in the
reverse situation). We still use the criterion in terms of the
normal elastic strain̄εnj = nj .(ε − εc).nj . Instead of the
discontinuous jump with the Heaviside function, we assume
an evolution like

η̇j = η̂(ε̄nj )
˙̄εnj , (41)

where the function̂η is chosen with the following proper-
ties: η̂ � 0; η̂ vanishes for large values of|ε̄nj |; η̂(x) is
maximum atx = 0. For instance we can chooseη̂(x) =
1
2cexp(−c|x|), so that, after integrating (41) above, we find
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Fig. 10. Schematics of the new deactivation rule: (a) instantaneous deactivation; (b) progressive deactivation.

η(x) = 1
2 + 1

2(1 − exp(−c|x|))sgn(x), a function with the
correct properties (1 for large positive values ofx; 0 for large
negative values, 1/2 atx = 0). Parameterc can be made de-
pendent on the accumulated damageδj .

– ‘The evolution of the stored strains’: they must evolve
continuously from 0 to the strain that corresponds with the
complete deactivation (strainβj of the model with instanta-
neous deactivation). Fig. 10(b) illustrates schematically how
εs
j increases as the effective stiffness (tangent) increases. Let

us remark some similarities in the present model with a work
done by Gerard and Baste [15]. Because it is normal to con-
sider that damage deactivation is a non-dissipative process
(at least when friction effects are not taken into account), we
decide here to enforce dissipation to be zero independently
for each deactivation mechanism, which means:

− ∂ψ

∂εs
j

: ε̇s
j − ∂ψ

∂ηj
: η̇j = −σ s

j : ε̇s
j − χj : η̇j = 0. (42)

To choosėεs
j to be collinear withσ s

j is a logical assumption,
so that this condition writes:

ε̇s
j = −χj : η̇j

σ s
j : σ s

j

σ s
j . (43)

This assumption of zero dissipation is well justified for the
deactivation situation. In case of reactivation, we consider
a reversible behavior, so that the same model apply: the
indexηj evolves from 0 to 1 (still driven by the normal strain
that changes from a negative to a positive value), and the
stored strainεs

j progressively vanishes.
In fact, as shown below, such a behavior could lead

to incorrect results for complex multiaxial loadings (non-
proportional). We will see that, in case of damage reacti-
vation (reopening of cracks) we should expect a discontinu-
ous response (instead of a continuous one) when the stress
(strain) states are significantly different from those present at

the deactivation stage. The continuous response when reac-
tivation takes place is recovered only if one introduces fric-
tion effects, which means an additional dissipation, so that
the dissipation should not be enforced to be zero as it was
assumed in the present context.

This progressive deactivation rule has been applied for
SiC/SiC tension-compression tests at 0◦ and 45◦, as shown
in Fig. 11. Only one additional material parameter was
used, that governs the evolution of the deactivation indexes.
It is shown that this progressive deactivation improves
significantly the modeling for stresses around 0.

5. Discussion and future developments

In the present damage model of CMC’s, we have incor-
porated most of the significant facts that must be taken into
account:

– the possibility for damage development in compression
for large stress levels, by splitting effects and the
development of longitudinal cracks;

– the correct modeling of transverse strains in uniaxial
tension-compression for directions 0◦ as well as 45◦;

– the correct prediction of combined tension-shear experi-
ments with various load ratio and the capability to model
the significant shape change of the non-damage surface,
even for the tensorial damage, as demonstrated by biax-
ial tests (tension-compression + internal pressure);

– the new damage deactivation rule allows now to describe
correctly the complete deactivation (especially for the
shear modulus), without a stress-strain response discon-
tinuity;

– in the reverse situation of the damage re-activation it is
possible to have a stress-strain response discontinuity



144 J.-L. Chaboche, J.-F. Maire / Aerospace Science and Technology 6 (2002) 131–145

Fig. 11. Tension-compression simulation with the progressive deactivation model: (a) direction 0–90◦ ; (b) direction 45◦.

(for complex loadings in which the stress at opening is
different than that at crack closing). This is expected to
be in conformity with microcrack mechanics, provided
friction dissipation has not been introduced;

– a progressive deactivation model has been proposed,
which produces correct responses. It uses two additional
internal variables submitted to the constraint of a zero
dissipation during deactivation.

Clearly, the open problem that needs further modeling ef-
forts, is related with friction effects. In that aspect, two ob-
jectives can be selected for CDM based models in composite
materials:

(1) better describe the damage reactivation effects, replac-
ing the possibility of a discontinuous stress-strain re-
sponse by a sliding and dissipative effect,

(2) introduce slight inelastic hysteresis that can be observed
during the quasi-elastic unloading/reloading, and there-
fore be able to describe the damage growth during fa-
tigue tests.

In relation with the first objective, it is interesting to con-
sider the microcrack example already discussed (Fig. 9(a)).
Assume a shear loading with a small positive normal stress
that opens the crack (AB), then change the normal stress to
a negative value (BD). If the friction coefficient of crack sur-
face faces is sufficient, the shear stress can be changed (DE),
leading to a shear response that obeys the initial shear stiff-
ness. During (DE) there is an elastic energy storage (model
of Section 3.3).

Suppose now the normal stress changing to a positive
value (EG). An infinite friction view will interpret the
path (EF) as a discontinuous response. Contrarily, for a
limited Coulomb’s friction resistance, we have the behavior
shown on Fig. 9(b) [1,11]: at point C, just at closure, the

Coulomb cone is created. During (DE) there is no relative
displacement of the crack faces. Before reopening (EG)
Coulomb’s criterion is necessarily attained and slip takes
place from point E′ to point F, which demonstrates that the
expected discontinuous response corresponds in fact to a slip
mechanism and to an additional dissipation by friction.

The second objective will need to introduce additional
damage and friction effects at a lower level, taking into
account the bridging effects (of the matrix microcracks that
have grown more or less perpendicular to the bundles) and
the associated secondary debonding and friction effects. In
this objective, the CDM based model will be supported by
works done by Hild et al. [19].
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