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A B S T R A C T

A novel methodology combining traditional image algorithms with deep learning is proposed to accurately
classify each pixel of the XCT image of 2.5D woven fabrics with fewer user involvement. For images with sym-
metrical microstructures, we first extracted the weft and matrix edges separately and then performed curve fit-
ting to obtain the warp edges. The regions enclosed by the warp and weft edges were weft regions, and the
areas between two warps were warp regions. Then, threshold segmentation was adopted to achieve pixel clas-
sification. For an image with asymmetrical microstructures, a fully convolutional neural network consisting of
one encoder and two decoder networks was trained using the symmetry image. Finally, two finite element
models of the 2.5D composite were established to predict the linear elastic modulus, one containing all the
geometries and the other containing only the symmetrical geometry. The results show that the former predic-
tion fit the experimental results better.
1. Introduction

Carbon fiber‐reinforced silicon carbide matrix composites (C/SiC
composites) are high‐performance ceramic matrix composites (CMCs)
with excellent properties, such as low density, high temperature resis-
tance, and high strength, and they are considered to be one of the most
promising candidate materials for hot end parts of aero engines. In
engineering applications, CMC structures are generally woven [12].
Therefore, accurate prediction of the mechanical properties of woven
composites is of great practical significance. 2.5D woven fabric is a
novel weaving technology that is an improvement over traditional
2D woven fabric. The warp and weft are intertwined to interlock,
and the fiber bundles are interwoven through a certain angle in the
thickness direction [3], which results in a better anti‐delamination per-
formance than 2D and is easier to prepare than 3D woven material.

Currently, the macro‐mechanical method treats the composite as
anisotropically homogeneous through homogenization, but it cannot
reflect the effect of the microstructures on the macro‐mechanical
response of the composite [1,4,5]. Therefore, it is necessary to adopt
a micromechanical method to analyze the composite performance.
The establishment of a finite element (FE) model in the micromechan-
ical method includes the following: 1) an idealized representative vol-
ume element (RVE) model. By measuring some major geometrical
parameters of the 2.5D composite, simplifying and assuming the real
microstructures, a smallest periodic RVE model is then established
[3,6,7]. Although the entire modeling and analysis process is relatively
simple, it does not consider imperfections such as fiber deformation
and random pore distribution during the preparation process. 2) Real
geometry modeling based on X‐ray computed tomography (XCT), it is
a nondestructive testing method that can obtain a series of images con-
taining information on the internal microstructures without destroying
the composite. These images are segmented by traditional image algo-
rithms and then transformed into a 3D model to build an FE model.
Studies have shown that an FE model based on XCT can truly reflect
the microstructures of the reinforcement [8,26] or composite [9],
and thus the mechanical properties prediction results are closer to
the experimental results.
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Fig. 1. XCT slice with a symmetrical structure.
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Some segmentation methods based on traditional computer vision
for XCT slices have been proposed, including multiple types of com-
posites, such as structure tensor for 2D woven textile fabrics
[10,28,29], gray‐level co‐occurrence matrix for 3D orthogonal woven
fabrics [8], and fiber‐tracking algorithms for multidirectional
[+45/90/45/0] carbon fiber‐reinforced polymer (CFRP) specimens
[11]. These methods are designed according to the characteristics of
the meso‐structure. In addition, the structure tensor and gray‐level
co‐occurrence matrix algorithms depend heavily on the scanning reso-
lution; therefore, they cannot be applied to 2.5D woven fabrics. Con-
sidering the fabric compaction and the axial yarn torsion, Liu [30]
reconstructed the representative volume element of 3D five‐
directional braided composites based on a statistical approach. How-
ever, this method does not take into account the defects in the matrix
preparation process. Gao [12] treated each matrix as a twisted quadri-
lateral. By searching for a new matrix pixel within the radius R of the
current matrix pixel, labeling and matching the matrix, the area
between adjacent matrices in the vertical direction is the warp. This
method requires more manual participation in the process of matrix
pairing and the extraction of matrix edges. In addition, some warp
directions are different; therefore, it is also necessary to achieve seg-
mentation of individual fiber bundles.

XCT slices of 2.5D woven fabrics include not only symmetrical but
also asymmetrical microstructures caused by the manufacturing pro-
cess, as shown in Fig. 1 and Fig. 12, respectively. However, none of
the existing methods considers asymmetric image identification. At
present, fully convolutional neural networks (FCNs) [13] have gained
wide attention in the field of image segmentation, such as U‐net [14]
for biological images and SegNet [15] for road traffic. However, there
are few articles on methods for fiber‐reinforced composites.

Ali [10] and Emerson [16] implemented supervised learning to seg-
ment XCT slices; this method required training using XCT slices and
corresponding label images. Compared with conventional machine
learning algorithms, the deep convolutional neural network (DCNN)
showed superior segmentation preference. The size of the training
dataset had a strong effect on preference. However, the label images
used in these studies were all manually prepared. Data augmentation,
which could expand the dataset and significantly improve prediction
Table 2
Mechanical parameters of fiber bundle (GPa).

E1 E2 G12

218.8 29.3 26.88

Table 1
CT parameters used for the composite.

Voltage (Kv) Power (W) Projection Number Exposure Tim

60 5 2001 2

2

accuracy, was also not adopted. In addition, various existing neural
networks have been designed for relatively complex application sce-
narios, with many types of classifications and a large number of
parameters. However, there are only four categories of 2.5D woven
fabrics.

The aim of this work was to 1) adopt traditional computer vision
methods to segment images with symmetrical structures; 2) train the
multi‐decoder network proposed using XCT images with symmetrical
structures and study the influence of data augmentation and the num-
ber of iterations on segmentation accuracy; and 3) establish two FE
models to predict the linear elastic modulus to determine the effect
of the microstructures on prediction accuracy.

2. Material and experiment

The carbon fiber was T700‐6K (average diameter = 6 μm). The
composite was a 2.5D C/SiC woven fabric provided by the Institute
of Metal Research, Chinese Academy of Sciences. The volume fractions
of the fiber were approximately 43%. The matrix and PyC interface
were successively prepared by the chemical vapor infiltration (CVI)
process.

An area of 10 mm × 10 mm × 4 mm was cut from the rectangular
woven plate using a diamond wire saw. The specimen was scanned
using a (Comet, Switzerland) to obtain a series of XCT images contain-
ing the internal microstructures of the material. The scanning param-
eters are presented in Table 1.

The water jet method was used to cut three cuboid‐shaped speci-
mens with dimensions of 120 mm × 8 mm × 4 mm, and a uniaxial
tensile test was performed on a WDW‐100 universal testing machine
(Shijin, China). The axial linear elastic modulus of the specimen was
121 GPa according to experiment. The mechanical parameters of the
fiber bundle obtained by the mixture method [23] are listed in Table 2,
where 1 represents the warp direction of the material, 2 represents the
weft direction, and 3 represents the direction perpendicular to 1 and 2.
The main elastic parameters of the fiber and matrix can be found in
Ref. [24].

3. Image segmentation through traditional image processing

In the XCT images with symmetrical microstructures, the matrix
was symmetric on both the left and the right. To facilitate image pro-
cessing, we first extracted the edges of the matrix of the image and
matched them by the center coordinate. Because the edges of the weft
and matrix partly overlapped, we selected the weft edges by image
gradient and deleted them. The remaining matrix edges were fitted
using the least squares method to obtain the complete warp edges;
the regions between two matrixes were warp yarn. The regions
enclosed by the warp and weft edges were weft regions, as shown in
Fig. 1. Finally, the other pixels were classified by threshold segmenta-
tion. All these processes were executed in OpenCV.
G23 μ23 μ12

25.7 0.34 0.13

e (s) Pixel Size (μm) Width (pixels) Height (pixels)

11.847 1024 1004



Fig. 2. The edge extracted by the Canny algorithm.

Fig. 3. Regions deleted of pores or noise.
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3.1. Matrix pairing

Owing to the obvious difference between the matrix and other
components in the slice, the threshold value of the matrix was set to
0.1133 according to threshold selection method proposed by Otsu
[27]. Fig. 2 shows the edges extracted by the Canny operator after
inverting the resulting image. The image was labeled by eight con-
nected regions, and then the area of the region less than 280 was
deleted, as shown in Fig. 3. We checked whether the matrix edges
were closed; if not, we performed the inflation operation. The eight
connected regions were added again to label every single matrix,
and the center coordinates of every matrix were computed. The small
Fig. 4. (a) Harris corner points. (b) Red dots representing the screened corner p
interpretation of the references to color in this figure legend, the reader is referred
in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. (a) Left and (b)

3

yellow triangle shown in Fig. 4(b) represents the center. According to
the center coordinate, we judged whether the matrix was located at
the same horizontal position, and according to the abscissa, we deter-
mined whether the matrix edge was located at the left or the right side
to realize matrix pairing.

In addition, the Harris corner detection algorithm was adopted to
obtain the corner points, and the top 300 points were selected, mark-
ing them with a green cross, as shown in Fig. 4(a). The red dots in
Fig. 4(b) show the corner points whose horizontal and vertical coordi-
nate distances are all more than 10 pixels among the 300 corner
points. These points were used as described in Section 3.3 to correct
the fitting warp edge.

3.2. Weft edge recognition

To obtain the complete warp edges by fitting the matrix edges, weft
edges should be removed from the matrix edge. The image itself is a
two‐dimensional function with a size of ½row; col�. Therefore, the col-
umn gradient of each pixel is

Iy ¼ ½f ði; j þ 1Þ � f ði; jÞ�
2

ð1Þ

and the row gradient of each pixel is

Iy ¼ ½f ðiþ 1; jÞ � f ði; jÞ�
2

ð2Þ

where i and j refer to the rows and columns of the image, respectively.
The gradient of each pixel is

Ixy ¼ Ix:� Iy ð3Þ
Because of the distinct difference in the direction of the warp and

weft, the symbol Ixy should be opposite in each direction. The number
of warp pixels was larger than that of the weft. Therefore, a pixel with
a smaller number was considered as the weft edge, and its pixel value
was set to 0. The results of a pair of matrix edges are shown in Fig. 5(a)
and (b), respectively.
oints and yellow triangles representing the center of the matrix edges. (For
to the web version of this article.) (For interpretation of the references to color

right matrix edge.



Fig. 6. (a) Left and (b) right edges divided into three parts.
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3.3. Extracting upper and lower edge of warp

Fig. 6(a) and (b) show that the matrix edge was divided into three
parts based on the number of edge pixels in each column of the image.
Areas 1, 3, 2 or 6, 4, 5, contained the upper, lower and upper and
lower edges of the matrix, respectively.

The minimum ymin and maximum ymax values of the column coordi-
nates of the left warp edge are shown in Fig. 6(a). The column coordi-
nates of Area 1 ranged from ymin to ðymin þ ymaxÞ=2 and those of Area 3
ranged from ðymin þ ymaxÞ=2 to ymax. Within this range, we determined
whether the number of column coordinates corresponding to the row
coordinate with a pixel value of 1 was 1; if so, they were added to ext 1
and ext 2, which represented the number of coordinates of Areas 1 and
3, respectively, and they were recorded to the coordinate matrix of
coor ext 1 and coor ext 2.

The column coordinates of Area 2 ranged from ymin to ymax. The
warp upper and lower edges were recorded as up warp and
down warp, respectively. The number of row coordinates,
Row sim num, was counted with the same column coordinates and
the row coordinates were recorded as Coor coin. If

Coor coinðRow sim num; 1Þ � Coor coinð1; 1Þ ⩾ 3 ð4Þ
the row coordinate Coor coinð1Þ and the corresponding column coordi-
nate y were included in up warp and the row coordinate
Coor coinðRow sim numÞ and the corresponding column coordinate y
were included in down warp.

Next, the four parts of the matrix edge, the upper and lower edges
in Area 2, and two separate small edges in other areas were extracted.
The two small edges were then connected to the upper or lower edge
of the warp to obtain a complete warp edge.

Comparing Dis1 with Dis2, if the former was greater than the latter,
then coor ext 1 would be given asdown warp; otherwise, it would be
Fig. 7. The fitting result after
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given as up warp. For ext 2, the same comparison was made, and it
was connected to the upper or lower edges of the warp edge.

Dis1 ¼ coor ext 1ðext 1;1Þ � up warpð1;1Þ ð5Þ

Dis2 ¼ coor ext 1ðext 1; 1Þ � down warpð1;1Þ ð6Þ
3.4. Edge fitting

To ensure the accuracy of the fitting of the warp edge, the warp
upper edge was mirrored symmetrically, and the mirror length was
col=3. The upper edge of the warp after mirroring was fitted using
the least squares method, and the warp trend was obtained. The fitting
result is shown in Fig. 7. The extracted Harris corner points were sub-
stituted into the corresponding curve function, and then we checked
whether the corner points, obtained as described in Section 3.1, were
on the curve; if not, the function parameters were fine‐tuned. A similar
operation was then performed on the lower edge of the warp. These
curves were then substituted into the original slice. Fig. 8 shows the
fitting edges of the warp after substituting these curves into the origi-
nal slice. The regions between the two warp curves were warp yarn.

The regions where the image gradient, Ixy , calculated as described
in Section 3.2, was less than zero were the left edges of the weft; other-
wise, they were the right edges. The regions enclosed by the warp and
weft edges were the weft yarn. Because the pixel gray values of the
matrix and the pores were quite different, they were identified by
threshold segmentation. Additionally, we obtained a separate warp
area based on the locations of the fitting function, and the final classi-
fication image is shown in Fig. 8(b). Then, the skeleton of each warp
yarn was extracted to determine the fiber‐bundle orientation [25].
mirroring the matrix edge.



Fig. 9. XCT slices with asymmetrical structure.

Fig. 8. (a) Substitution of the fitting curve into the original XCT slice. (b) The final result. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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3.5. Image segmentation by neural network

The above method provides good classification for XCT slices with
symmetric structures. However, it cannot be used for some XCT images
where the symmetry is not obvious because the matrix conceals the
fiber bundle or because of changes in the yarn direction in the transi-
tion zone, as shown in Fig. 9. Currently, such images can only be
labeled manually; however, this workload is large. In addition, if they
are not labeled by different markers, they may incorporate subjective
factors during classification, leading to inaccurate classification.

We propose adopting a fully convolutional neural network (FCN)
based on deep learning to identify this type of image, which has
received significant attention in image segmentation.

3.6. Database

As described in Section 3, a total of 652 XCT slices were identified.
The original XCT slices and the corresponding results were used to
establish the database Q for training the FCN. However, owing to sep-
arate numbering of the warp, as described in Section 3.4, it is difficult
to segment the image using FCN. Therefore, we set all warps to the
Fig. 10. (a) The original XCT image and (b) the correspo
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same pixel value. Fig. 10(a) shows the original XCT image and
Fig. 10(b) represents the corresponding labels. In this study, we first
divided these images into training set Q1 and testing set Q2, which
included 452 and 200 pairs of images, respectively. Random data
transforms, including rotation, contrast, and brightness, were adopted
to augment training set Q1. There were 1808 pairs of images in Q1. We
used the pre‐ and post‐augmentation databases to train the neural net-
work and tested its performance to determine the benefit of data
augmentation.

3.7. Network architecture

Fig. 11 shows the established FCN architecture, named the multi‐
decoder network, which included one encoder and two decoder net-
works. The encoder network was composed of four encoders and a sin-
gle convolution layer. Each encoder contained two convolutional
layers with a filter size of 3 × 3 and a max‐pooling layer with a pool-
ing kernel size of 2 × 2. Each convolutional layer followed a batch
normalization (BN) [17] and a ReLU [19] non‐linearity [max(0, x)]
layer. The configurations of the two convolution layers were the same.
However, the feature channels of the second convolutional layer were
input to the pooling layer and a 1 × 1 convolutional layer, respec-
tively. The former was used to halve the size of the feature channels,
and the latter was used to compress the number of feature channels
to reduce the training parameters. When pooling was performed, the
indices of the maximum feature value in each pooling kernel were
recorded and passed to the up‐sampling layer of the decoder. After
the fourth encoder was a single convolutional layer with a filter size
of 3 × 3. The number of feature channels produced by the convolu-
tional layer of each encoder is listed in Table 3.

The feature channels produced by the last convolutional layer of
the encoder network were the input max‐pooling index decoder net-
work and the concatenation decoder network. Both were composed
of four decoders. The max‐pooling index layer was proposed by SegNet
[23]; however, this operation may lose some edge information, so that
nding label image with the same warp pixel values.



Fig. 11. Architecture of the multi-decoder network. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 3
Number of feature channels of the convolution layer of each encoder.

Encoder Network 1 2 3 4 Conv

Feature Channel 32 64 128 256 512
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the boundary of each structure is blurred. Therefore, we added the
concatenation layer in the FCN to further strengthen the relationship
between the shallow and deep networks.

Each max‐pooling decoder comprised an up‐sampling and a convo-
lutional layer, followed by a BN and ReLU layer. The up‐sampling
layer was used to double the size of the feature channel, and the max-
imum feature value index and the value recorded were assigned to the
corresponding locations of the feature channel of the up‐sampling
layer. The convolutional layer was used to further extract the deep
semantic information of the image and halve the number of feature
channels. Each channel concatenation decoder was composed of a
deconvolution layer followed by a ReLU layer, a channel concatena-
tion layer, and a convolution layer followed by a BN and ReLU layer.
The output of the deconvolution layer and the corresponding encoder
1 × 1 convolution layer were concatenated, and then the convolution
calculation was performed.

In the fourth decoder, the output of the last convolutional layer of
the two decoder networks was merged, and a 1 × 1 convolutional
layer followed by a ReLU layer was used to compress the number of
feature channels, the number of which was the same as the number
of classifications of the structure, which was four. During training,
Table 5
Number of feature channels of the channel concatenation decoder network.

Decoder Network_2 1 2

Layer Deconv Conv Deconv C

Feature Channel 128 128 + 128 128 6

Table 4
Number of feature channels of the max-pooling decoder network.

Decoder Network_1 1 2 3 4

Feature Channel 256 128 64 32

6

we used cross‐entropy loss [13] as the objective function to train the
network. When testing, the merged feature channels were provided
to a multi‐class soft‐max classifier to predict the class probabilities of
each pixel independently, and the class of each pixel was the class with
the maximum probability.

The number of feature channels of the max‐pooling and channel
concatenation decoder networks are listed in Tables 4 and 5,
respectively.

We adopted the Adam optimizer [20] to train the multi‐decoder
network with a fixed learning rate of 0.01 and momentum of 0.999;
it was implemented using the Caffe framework [18] on a Nvidia
RTX 2080 graphics card. The initialization methods for the weight
and bias of the convolutional layer used MSRA [19] and a constant,
respectively. The number of training iterations was 30,000, and the
weight file was saved every 5000 iterations.

3.8. Segmentation results

After the training was completed, each saved weight file was used
to segment the XCT slices in the test set separately, and the perfor-
mance of the network was evaluated through intersection over union
(IoU) for each structure and mean intersection over union (MIoU)
for all structures.

IoU ¼ pii
∑k

j¼0pij þ∑k
j¼0pji � pii

ð7Þ

MIoU ¼ 1
kþ 1

∑
i¼0

pii
∑k

j¼0pij þ∑k
j¼0pji � pii

ð8Þ
3 4

onv Deconv Conv Deconv Conv

4 + 64 64 32 + 32 32 16 + 16



Table 6
IoU of each structure and MIoU varying with the iteration before data augmentation.

Iteration Pore (%) Matrix (%) Warp (%) Weft (%) MIoU (%)

5000 78.67 74.6 80.5 50.1 70.97
10,000 84.56 78.5 82.21 54.21 74.87
15,000 84.92 78.07 82.18 54.84 75.00
20,000 84.1 77.82 81.29 52.98 74.05
25,000 84.17 77.76 81.38 53.45 74.19
30,000 83.84 77.36 81.38 53.65 74.06

Table 7
The IoU of each structure and MIoU varying with the iteration after data augmentation.

Iteration Pore (%) Matrix (%) Warp (%) Weft (%) MIoU (%)

5000 80.56 73.2 85.5 75.2 78.62
10,000 86.81 77.03 90.13 79.64 83.4
15,000 86.62 76.92 89.64 78.56 82.94
20,000 86.7 76.8 89.68 78.52 82.93
25,000 86.74 77.01 89.77 78.46 83.00
30,000 86.5 76.74 89.73 78.29 82.82
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where pii is the number of pixels predicted correctly, k represents the
total number of classes included in the slice, pij means that misclassified
the pixels of ith class into jth class, pji means that misclassified the pixels
of jth class into ith class.

Tables 6 and 7 show the changes in IoU and MIoU, respectively,
with the number of iterations before and after data augmentation. It
is noticeable that data augmentation had a significant effect on the
classification results. Before augmentation, the highest MIoU appeared
when the number of iterations was 15,000, after which it appeared at
10,000 iterations. At 10,000 times, the MIoU of the latter was approx-
imately 8% higher than that of the former, and the IoU of the weft
increased by approximately 25%. In addition, regardless of whether
data augmentation was performed, MIoU initially increased and then
decreased, which meant that the greater the number of training itera-
tions, the better the prediction result. The classification results of the
matrix and the weft were both the worst. On the one hand, because
Fig. 12. (a) The result of image segmented by FCN, (b) the man

7

the weft and warp were both carbon fiber bundles, it was difficult to
distinguish between them. On the other hand, because the matrix
was at the junction of warp yarns and pores, there may have been
some regions where the matrix was incorrectly classified, as described
in Section 3.

Among the predictions on the test set, the iteration with the highest
MIoU was selected to identify the XCT slices with asymmetric struc-
tures. Fig. 12 shows the predictions of 10,000 iterations after augmen-
tation. It is worth noting that the neural network could accurately
identify these XCT images. Although there were still some classifica-
tion errors, this process can be used normally with only a few manual
corrections. Then, each warp was numbered, and the fiber orientation
was determined manually. Correcting errors and warp number can
also be performed by traditional image‐processing algorithms instead
of manual operation if the number of images is relatively large.
ually corrected results, and (c) the manual warp numbering.



Table 8
Comparison between prediction and experiment.

Results E11/GPa (Real Model)

Prediction 116
Experiment 121
Error (%) 4.13

Fig. 13. (a) 3D model reconstructed; (b) FE model; (c) the boundary condition imposed.
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4. Model validation

The 3D model of the 2.5D woven fabric composite structure was
reconstructed through the marching cube [21] algorithm, and the sur-
face simplification [22] method was adopted to remove the redundant
surface. Fig. 13(a) shows the reconstructed 3D model. These were then
combined with the advancing‐front technique to generate an FE model
with tetrahedral mesh, as shown in Fig. 13(b), called the real FE
model; the mechanical parameters of the yarn are shown in Table 2.
One end of the FE model was fixed, and displacement constraints were
applied within the linear elastic range to the other end to simulate the
loading process of the uniaxial tensile test, the boundary condition is
shown in Fig. 13 (c). Table 8 shows the prediction results for the linear
elastic modulus of the composite in the tensile direction. The predic-
tion of the real FE model had better agreement with the experimental
results, but it underestimated the performance owing to the complex
distribution of the matrix and pores in the transition region matrix.
8

In contrast, the prediction of the perfect FE model overestimated the
performance, which was due to the relatively perfect microstructures.

5. Conclusions

According to the XCT image features of the 2.5D woven composite
such as the symmetry of the internal microstructures, the pixel gray
level, and the gradient, a traditional image‐processing algorithm was
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adopted to realize the classification of each pixel in the image. The
proposed multi‐decoder FCN was trained using the classification
results of XCT images with regular microstructures, and then segmen-
tation of images with relatively complex and chaotic internal
microstructures was realized. This shows that applying these two
methods simultaneously to segment XCT images can greatly save man-
power and improve the accuracy of classification. It is worth noting
that the training number of the neural network should be up to the
point, and the data augmentation had a significant effect on the
improvement of accuracy. This study proves once again that the FE
model based on XCT images needs to include all the periodic structures
of a material to improve the prediction accuracy.
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